
APPENDIX  B

Allocating Tows to Maximize Profits

1. Introduction

This appendix addresses the issue of modeling a water transportation carrier allocating its
tows amongst competing uses in order to maximize its profits.  The water carrier is
assumed to be a perfect competitor in all input markets facing fixed prices for the
quantities of inputs it decides to employ, however, this assumption may be relaxed and the
important results still hold.  The analysis can readily be extended to the case where the
carrier is forced to allocate multiple classes of fixed inputs such as tow boats, hopper
barges, covered hopper barges, tank barges, and deck barges amongst competing uses.
Once again, the important results still apply.

2.  Definitions

Let xj,i (j=1,...,m) (i=1,…,n) represent the quantity of variable input j used in producing
output i.  These inputs are available to the water carrier in any quantity desired.  These
inputs are meant to represent those inputs that the carrier can vary during the period of
analysis such as labor and fuel.  Each output i represents a origin, destination, and
commodity combination served by the carrier.

Let y represent the total number of tows available to the water carrier.  Here a tow is a
stylized unit of barges and a towboat.  Let yi (i=1,…,n) represent the number of tows
allocated to producing output i and y represent the total number of tows available to the
carrier.  Here y is fixed during the period of analysis.  Note that y1 + y2 + …+ yn # y.  The
total number of tows allocated to alternative origin, destination, commodity combinations
must be less than the number of tows operated by the water carrier.

Let qi = fi(x1,i, ..., xm,i, yi) (i=1,…,n) represent the production function for output i.  This
formulation models the quantity of output produced in each alternative market as a
function of the inputs employed in that market by the water carrier.  We assume that all
inputs are productive and that the law of diminishing marginal returns eventually applies to
all inputs.

Let wj (j=1, ...,m) be the price of variable input j.  These prices are perceived as given to
the water carrier and do not vary with the quantities of inputs employed.  Then total
variable costs may be written as

V = x1,iw1 + x2,iw2 + ...+ xm,iwm + …+ x1,nw1 + x2,nw2 + ...+xm,nwm.

Let F denote the total fixed costs of the water carrier.  These costs do not vary with the
levels of outputs provided and are meant to represent the costs to the carrier of its fixed
inputs.



Finally, let S represent the variable costs of allocating the fixed number of tows between
the outputs, that is, S = S(y1, …, yn).  This function represents the possible costs
associated with a reallocation of the water carrier’s tows to alternative uses.

Let pi denote the price of output i (i=1, …,n).  These prices are not assumed fixed and can
vary with the level of outputs.  Denote the inverse demand functions for each output as pi

= pi(qi) (i=1, …,n).  Further, assume that these inverse demand functions are well behaved
with the change in price a non-positive function of the change in quantity demanded.

We may now define the water carrier’s profit as Π = p1q1  +  p2q2  +… +  pnqn – V – S - F.
The carrier’s profit maximization problem may be defined as maximize Π subject to y1 + y2

+ …+ yn # y.  In words, the water carrier’s objective is to maximize profits by allocating
its tows to alternative markets subject to the constraint that the sum of all tows allocated
must be less than or equal to the number of tows available to the carrier.

3.  Solution and Some Important Results

The technique employed to find the solution of the carrier’s profit maximization problem
involves the application of the Kuhn-Tucker Theorem for constrained maximization.  The
Kuhn-Tucker Theorem demonstrates that certain conditions must hold for a function to
have a maximal value subject to a set of constraints.  The solution technique is
summarized below.  First, form the Lagrangian function.  Second, derive the first order
conditions for maximization of the Lagrangian.  Third, solve the first order conditions.
Finally, interpret the economic content of the first order conditions.

Ignoring the non-negativity constraints associated with the individual variables, the
Lagrangian of the profit maximization may be written as

(1) L = Π + λ( y - y1 - y2 -… - yn).  

Here λ is a Lagrange multiplier and represents the shadow price of the constraint that
there are only y tows available for the water carrier to allocate in producing the outputs.
Define εi = (Μqi/Μpi)(piqi) and θi = [1+(1/εi)], (i=1,…,n). εi and θi denote the own-price
elasticty of demand and the change in total revenue per change in unit of output,
respectively, for each market.

The Kuhn-Tucker Theorem indicates that the first order conditions for a maximization of
this Lagrangian and its associated primal objective function are:

(2a) piθi(Μfi/Μxj,i) - wj  # 0, (j=1, ...,m), (i=1,…,n);

(2b) [piθi(Μfi/Μxj,i) - wj]xj,i  = 0, (j=1,...,m), (i=1,…,n);



(3a) piθi(Μfi/Μyi) - ΜS/Μyi - λ  # 0, (i=1,…,n);

(3b) [piθi(Μfi/Μyi) - ΜS/Μyi - λ]yi  = 0, (i=1,…,n);

(4a) y - y1 - y2 -… - yn  ∃ 0, and (y - y1 - y2 -… - yn )λ = 0; and

(4b) (y - y1 - y2 -… - yn )λ = 0.

Equations (2a) and (2b) are familiar conditions for profit maximization.  They ensure that
if a variable input is used in production of an output, it will be used in a quantity such that
its marginal revenue product is just equal to the price of the input.  Equations (3a) and
(3b) are of special interest.  Note first, the Lagrange multiplier λ represents the shadow
price of tows.  It represents the amount that total profits would increase per unit increase
in the number of tows available to the carrier.  In other words, it is the opportunity cost of
tows to the water carrier.  If tows are used in producing outputs a and b, that is ya, yb>0,
then equations (3a) and (3b) imply

(5) paθa(Μfa/Μya) - ΜS/Μya = pbθb(Μfb/Μyb) - ΜS/Μyb = λ.

Equation (5) demonstrates that when scarce tows are used to produce different outputs,
the imputed marginal revenue products less the incremental variable allocation costs must
be equal across all outputs produced in positive quantities, which in turn is equal to the
opportunity cost of tows to the water carrier.  If the variable costs of allocating tows
between markets are equal, then carriers will allocate tows to alternative markets until the
imputed marginal revenue foregone is equal across the alternative outputs.  Further yet, if
the variable costs of allocating tows between markets is negligible as it likely is for tows,
then the imputed marginal revenue between all outputs produced with tows are equal to
the opportunity cost of tows.  This result demonstrates that water carriers will respond to
market prices and elasticities in allocating their tows amongst competing uses.  It further
demonstrates that the profit maximizing water carrier will allocate it tows in a rational
manner, producing profitable outputs and not producing unprofitable outputs.

Note that there is information contained in equation (5) regarding when the water carrier
will desire to purchase more tows.  If λ is greater than the price of a tow, the carrier can
increase profits by adding tows.  Consequently, when the opportunity cost of tows (profits
foregone) to the water carrier is greater than the price of tows, the water carrier will
desire to purchase more tows.  When the opportunity cost of tows for the water carrier is
less than the price of tows, the water carrier will not desire to add additional tows.  Hence,
if the price of tows is given to the carrier and the carrier faces decreasing marginal
productivity of incremental tows and an elastic demand curve in output markets, then
there is a point where no further additions to the fleet of tows will purchased by the
carrier.  Consequently, system congestion cannot increase without bound.  In other words,
the economic rationality of shippers and carriers will work together to prevent grid-lock of
an existing navigation system.




